UNCLASSIFIED

AD NUMBER
AD448477
NEW LIMITATION CHANGE
TO Approved for public release, distribution unlimited
FROM Distribution: No Foreign
AUTHORITY
USNOL ltr., 29 Aug 1974

UNCLASSIFIED

AD 4 4 8 4 7 7

DEFENSE DOCUMENTATION CENTER

108

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION ATEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U.S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

AIR-FILM COOLING OF A SUPERSONIC NOZZLE

18 AUGUST 1964

UNITED STATES NAVAL ORDNANCE LABORATORY, WHITE OAK, MARYLAND

NOLTR 64-65

į

Aerodynamic Research Report No. 224

AIR-FILM COOLING OF A SUPERSONIC NOZZLE

by Bing H. Lieu

ABSTRACT: An experimental study was made of the internal airfilm cooling of a Mach 2.4, nonadiabatic wall, axially symmetric nozzle. The main stream air was heated to supply temperatures from 672 to 1212°R at supply pressures from 115 to 465 psia. The film coolant air was injected through a single peripheral slot at an angle of 10° from the nozzle wall. The coolant-to-main stream mass flow ratios were varied up to 20 percent. Steady-state nozzle wall temperatures were measured in both the subsonic and the supersonic flow regimes.

The turbulent pipe flow equation of Dittus and Boelter was found to be applicable in predicting the heat transfer rates in the absence of film cooling. A modified version of the semi-empirical equation of Hatch and Papell was found applicable in estimating the film-cooled nozzle wall temperatures.

U. S. NAVAL ORDNANCE LABORATORY WHITE OAK, MARYLAND

NOLTR 64-65 18 August 1964

Air-Film Cooling of a Supersonic Nozzle

This report presents a comparison between experimental data and theoretical calculations of air-film cooling of an axisymmetric, Mach 2.4 nozzle.

A number of people have contributed towards this project. Special thanks are due to Mr. R. C. Sullivan for the instrumentation of the nozzle and Mr. F. W. Brown for his general assistance in performing the experiment.

This work was sponsored by the Bureau of Naval Weapons Special Projects Office under Polaris Long Range Research (Task No. PR-10).

R. E. ODENING Captain, USN Commander

K. R. Enkenhus
By direction

CONTENTS

	Page
INTRODUCTION	1
EXPERIMENTAL PROCEDURE	2
Apparatus and Instrumentation	2
Test Conditions and Procedure	3
ANALYSES AND RESULTS	4
Nozzle Heat Transfer Without Film Cooling	5
Film-Cooled Nozzle Wall Temperatures	7
DISCUSSION AND CONCLUSIONS	8
SUMMARY	10
REFERENCES	12

ILLUSTRATIONS

Figure	1	Film-Cooling Apparatus Schematic
Figure	2 a	Nozzle Configuration
Figure	2b	Design Flow Characteristics of Nozzle
Figure	2c	Coolant Injection Slot
Figure	3	Thermocouple Locations
Figure	4	Thermocouple Plug Design
Figure	5	Thermocouple Read-Out Schematic
Figure	6	Nozzle Heat-Transfer Correlation
Figure	7	Velocity Ratio Function
Figure	8 a	Nozzle Film-Cooling Correlation for $\rm T_S=672^{O}R$, $\rm P_S=315$ psia
Figure	8b	Nozzle Film-Cooling Correlation for $\rm T_S=852^{O}R$, $\rm P_S=315$ psia
Figure	8c	Nozzle Film-Cooling Correlation for $T_S=852^{\circ}R$, $P_S=465$ psia
Figure	8d	Nozzle Film-Cooling Correlation for $T_S {=} 1032^O R, \ P_S {=} 115$ psia
Figure	8e	Nozzle Film-Cooling Correlation for $T_S=1032^{\circ}R$, $P_S=215$ psia
Figure	8 f	Nozzle Film-Cooling Correlation for $\rm T_S = 1032^{O}R$, $\rm P_S = 315$ psia
Figure	8g	Nozzle Film-Cooling Correlation for $T_S\!=\!1212^OR$, $P_S\!=\!115$ psia
Figure	8h	Nozzle Film-Cooling Correlation for $\rm T_S=1212^OR$, $\rm P_S=315$ psia
Figure	9	Measured and Predicted Wall Temperatures
Figure	10	Film-Cooled Nezzle Throat Temperatures
Figure	11	Extended Flow Model of Reference (6)

SYMBOL LIST

(The units listed here are consistent with the equations given in this report.)

Α	flow area, in ²
$c_{\mathfrak{p}}$	specific heat at constant pressure, Btu-in2/lbm-ft2-OR
d	diameter, in
f	velocity ratio function defined by equations (21) and (22)
h	heat transfer coefficient, Btu/sec-ft ² -OR
k	thermal conductivity, Btu-in/sec-ft3-OR
L	injection slot length = 2#r for axisymmetric slot, in
М	Mach number
m	mass flow rate, lbm/sec
Nu	Nusselt number
P	pressure, lbf/in ² abs.
p	pressure ratio defined by equation (3)
Pr	Prandtl number
q	heat flux, Btu/sec-ft ²
r	radius, in
Re	Reynolds number
S	injection slot width, in
T	temperature, OR
u	velocity, ft/sec
z	axial distance measured from the injection slot exit, ia
α	thermal diffusivity, in-ft/sec
β	effective injection angle defined by equation (19), radians

geometrical injection angle, radians

adiabatic wall film-cooling effectiveness

n' nonadiabatic wall film-cooling effectiveness

μ absolute viscosity, lbm/sec-in

ρ mass density, lbm/ft-in²

exponent defined by equation (20)

w mass flow parameter defined by equation (4).

lbf/in² abs/OR¹/²

Subscripts

a upstream	of	orifice	in	mass	flow	meter
------------	----	---------	----	------	------	-------

aw adiabatic wall

b downstream of orifice in mass flow meter

c coolant, at injection slot exit

d local diameter

g main stream

H cooling water

i nozzle inner surface

j inner surface thermocouple junction locations

o nozzle outer surface

s main stream supply (stagnation conditions)

w nozzle wall

∞ local free stream

Superscripts

- o zero coolant injection
- * conditions at throat

INTRODUCTION

When a surface is exposed to a high energy fluid stream, some means of cooling the surface may become necessary. Many methods of cooling are available or have been proposed (ref. (1)). Among these is film cooling. Film cooling employs a second fluid (the coolant) introduced between the surface and the high energy main stream, thus absorbing the heat which would otherwise flow from the main stream to the surface. The coolant, not necessarily the same fluid as the main stream, can be injected through a single slot or a series of slots in the surface.

In any particular application, many factors need to be considered in selecting a cooling method. Some of the features of film cooling are the following:

- (1) Film cooling may be applied when needed.
- (2) Film cooling may be applied locally (single-slot arrangement) or over an extended surface (multiple-slot technique (ref. (2)).
- (3) Film cooling does not alter the geometry of the surface (as in ablative cooling).
- (4) Film cooling does not require a special material or manufacturing process (as in porous-wall transpiration cooling).

The application of film cooling has been studied quite extensively (e.g., refs. (1) through (8)). The simplified flow model of Hatch and Papell (ref. (6)) developed for the gaseous film cooling of an adiabatic plate, resulted in a semi-empirical equation. This equation, incorporating the injection slot angle factor of reference (7), was used with some success by Lucas and Golladay (ref. (8)) in correlating their experimental data for film cooling of a rocket motor.

In the present investigation, the air-film cooling of an axially symmetric, nonadiabatic wall, Mach 2.4, contoured nozzle was studied by relating the decrease in the local nozzle wall temperatures with the increase in coolant mass flow rate. The equation of reference (7) was modified to apply to the axisymmetric, nonadiabatic wall used in the experiment.

EXPERIMENTAL PROCEDURE

Apparatus and Instrumentation

The air-film cooling of a supersonic nozzle was performed with the apparatus shown schematically in figure 1. The compressed air in the bottle field was used as the supply for both the main stream and the film coolant. The main stream air was heated in a propane-fired, indirect heat exchanger, the supply conditions being measured with a total temperature thermocouple and a static pressure tap, both located in a plenum chamber to be described below. The coolant air was tapped directly from the bottle field via a l-inch line and metered with an orifice of 0.101-inch diameter. The coolant mass flow was controlled by a valve upstream of the orifice.

The essential features of the film cooling apparatus (fig. 1) consisted of a plenum chamber, a contraction section, an approach section, a coolant injection slot, and a nozzle. The plenum chamber is 54 inches long by $5\frac{1}{2}$ inches ID. The contraction section is contoured, $8\frac{1}{2}$ inches long by $5\frac{1}{2}$ -inch/l-inch ID. The approach section is 6 inches long by 1 inch ID. The nozzle (fig. 2a) is 13 inches long, is made of a chromium-copper alloy, and is externally water-cooled. The inlet and the exit sections of the nozzle are both 1 inch in diameter; the throat is 0.645-inch in diameter and 5 inches downstream of the injection slot exit. The design flow characteristics along the nozzle centerline are shown in figure 2b. The coolant injection slot (fig. 2c) has a width, S, of 0.0087-inch and a discharge angle, ϵ , of 10^{0} measured from the nozzle wall.

Fifteen pairs of chromel-alumel thermocouples embedded in the nozzle wall at fifteen axial locations measured the temperature distributions along the inner and outer surfaces. These thermocouples were embedded approximately 0.03 inches from the inner wall and mounted on the outer wall. The fifteen thermocouple stations covered a range $1.25^{"} \le z \le 9.06^{"}$, as shown in figure 2. These thermocouples were displaced circumferentially along the nozzle for ease of installation and reduction of stress. An axisymmetric temperature field in the nozzle wall is assumed.

The thermocouples measuring the nozzle inner surface temperatures were cemented in tapered plugs made of the same material as the nozzle such that the junctions protrude from the side of the plugs (fig. 4). These plugs were force-fitted and cemented into mating, tapered holes in the nozzle wall. The nozzle inner surface was machined after the plugs were installed, thus ensuring a smooth surface. The thermocouples measuring the outer surface temperatures were peened and cemented into small

indentations on the surface. This technique of thermocouple installation was used so as not to perturb the temperature field in the nozzle wall. The nozzle and thermocouple assembly was inserted and sealed inside a water jacket for the nonadiabatic test conditions (fig. 2a).

The thermocouple outputs were referenced to "cold" junctions in an oil bath at ambient temperature. The oil bath temperature was measured with another Cr-Al thermocouple with its cold junction in an ice bath. This thermocouple read-out method, shown schematically in figure 5, required only one ice bath and relatively short thermocouple wires. The validity of the method is insured by two fundamental laws of thermoelectric thermometry; viz., the law of intermediate metals and the law of successive temperatures (ref. (9)).

The output of all the thermocouples was recorded on magnetic tapes by an electronic digital read-out system.

Test Conditions and Procedure

1

The experimental conditions used are given in the following table:

Main Stream Supply Conditions		Main Stream Mass Flow Rate Without Film Cooling	Film Coolant Mass Flow Rates		
T _s	P _s (psia)	.o mg (lbm/sec)	(m _c)min (1bm/sec)	(m _c)max (1bm/sec)	
672	315	2.113	0.0737	0.2088	
852	315	1.876	0.0409	0.2085	
852	465	2.770	0.0605	0.2020	
1032	115	0.6224	0.0368	0.0778	
1032	215	1.164	0.0453	0.2324	
1032	315	1.705	0.0742	0.2102	
1032	465	2.517	(no film c	ooling data)	
1212	115	0.5743	0.0390	0.0953	
1212	315	1.573	0.0739	0.2097	

The main stream supply conditions were maintained constant for each test ($\pm 4^{\circ}$ R and ± 1.5 psi) by an automatic control system. The water flow rate was maintained at a constant value high enough to prevent local boiling.

The experimental procedure was as follows: For each of the supply conditions used, the nozzle wall temperatures without film cooling were recorded after they had reached steady-state values. Different amounts of film coolant were then injected into the nozzle and the steady-state wall temperatures were recorded for each coolant flow rate.

ANALYSES AND RESULTS

The experimental data were reduced and analyzed to yield information concerning nozzle heat transfer without film cooling and nozzle wall temperature reduction with film cooling.

The basic quantities and parameters needed for the analyses were determined by the following relations and assumptions:

(1) Mass Flow Rates

(a) The main stream mass flow rate is (assuming one-dimensional isentropic flow, sonic throat, d*=0.645", and no film coolant)

$$\dot{m}_{g}^{O} = 0.174 \text{ P}_{S} / \sqrt{T_{S}}$$
 (1)

(b) The film coolant mass flow rate is, (from the standard ASME orifice flow equations for air (ref. (10))) for subcritical orifice flow ($p \ge 0.535$),

$$\dot{m}_{\rm C} = 5.19 \times 10^{-3} \, \sqrt[4]{(1 - p)(1.0755p - 0.0755)}$$
 (2)

where

$$p = P_b/P_a \tag{3}$$

$$\psi = (0.707 + 0.293p)P_{a}/\sqrt{T_{a}}$$
 (4)

and for critical orifice flow $(p \le 0.535)$,

$$\dot{m}_C = 2.51 \times 10^{-3} \psi$$
 (5)

- (2) The thermocouples measuring the inner surface temperatures were approximately 0.03 inch from the inner surface (fig. 3). These thermocouple readings were assumed to correspond to the inner surface temperatures (i.e., $T_{wj} = T_{wi}$) in determining the temperature difference in equation (10) and in computing the film cooling effectiveness defined by equation (23).
 - (3) Properties of Main Stream Air
 - (a) The absolute viscosity is (from ref. (11))

$$\mu = \frac{0.609 \times 10^{-4} (T/100)^{3/2}}{198.7 + T}, \text{ lbm/sec-in}$$
 (6)

(b) The thermal conductivity is (from ref. (11))

$$k = \frac{0.38 \times 10^{-3} (T/100)^{3/2}}{441.7 \times 10^{-21.6/T} + T}, \text{ Btu-in/sec-ft}^{3}-R$$
 (7)

- (c) The Prandtl number is assumed constant at 0.7.
- (4) The properties of the coolant air were obtained from reference (11) based on a temperature at the injection slot exit of $530^{\circ}R$.
- (5) The thermal conductivity of the nozzle wall material is given by reference (12). For the range $672^{O}R \le T_W \le 1212^{O}R$, the thermal conductivity is essentially constant at

$$k_{W} = 0.672 \text{ Btu-in/sec-ft}^{2} - OR$$
 (8)

Nozzle Heat Transfer Without Film Cooling

One-dimensional (radial) heat conduction through the nozzle wall was assumed. (This assumption is discussed more fully in a late section.) Thus

$$q = k_W(T_{Wj} - T_{WO})/r_i \log(r_O/r_j)$$
 (9)

The heat transfer coefficient is, by definition

$$h_{\infty} = q/(T_{aw} - T_{w_i}) \tag{10}$$

The adiabatic wall (recovery) temperature, T_{aw} , in equation (10) was evaluated based on a turbulent recovery factor of 0.89 and a specific heat ratio of 1.4:

$$T_{aw} = T_S \frac{1 + 0.178 \text{ M}_{\infty}^2}{1 + 0.2 \text{ M}_{\infty}^2}$$
 (11)

From the nozzle geometry and measured values of T_{wj} and T_{wo} , the nozzle heat transfer results were obtained from equations (9) and (10), and are shown in figure 6 as $(Nu_d)_{\infty}$ vs. $(Re_d)_{\infty}$, where

$$(Nu_d)_{\infty} = h_{\infty} d/k_{\infty}$$
 (12)

$$(Re_d)_{\infty} = 4m_g^0/\pi d\mu_{\infty}$$
 (13)

Also included in figure 6 are the relation for turbulent pipe flow of Dittus and Boelter (ref. (13))

$$(Nu_d)_m = 0.023(Re_d)_{\infty}^{0.8}(Pr)_{\infty}^{0.4}$$
 (14)

and the relation for solid propellant rocket nozzle heat transfer of Colucci (ref. (14))

$$(Nu_d)_{\infty} = 0.023(Re_d)_{\infty}^{0.8}$$
 (15)

For laminar pipe flow, reference (15) gives

$$(Nu_d)_{\infty} = 4.36$$
 for uniform heat flux (16)

 $(Nu_d)_{\infty} = 3.66$ for uniform wall temperature

Film-Cooled Nozzle Wall Temperatures

The equation of reference (7) giving the film-cooling effectiveness, n. for an adiabatic plate, is

$$\eta = \cos(0.8\beta)e^{-\phi} \tag{17}$$

where

$$\eta = (T_{aw} - T_{wi})/(T_{aw} - T_{c}) \tag{18}$$

$$\beta = \tan^{-1} \left[\frac{\sin \epsilon}{\cos \epsilon + (\rho u)_g / (\rho u)_c} \right]$$
 (19)

$$\varphi = \left[\frac{h_{\infty}^{O} L z}{(\dot{m} c_{p})_{C}} - 0.04\right] \left[\frac{S u_{g}}{d_{C}}\right]^{1/8} f \qquad (20)$$

The velocity ratio function, f, in equation (20) is defined by

$$f = 1 + 0.4 \tan^{-1}[(u_g/u_c) - 1]$$

when (21)

$$(u_g/u_c) \leq 1.0$$

and

$$f = \left[\frac{u_c}{u_g}\right]^{1.5[(u_c/u_g) - 1]}$$
 (22)

when $(u_C/u_g) \ge 1.0$

Equations (21) and (22) are shown in figure 7.

In analogy with equation (18), the film cooling effectiveness for a nonadiabatic surface is defined by*

$$n' \equiv (T_{wi}^{O} - T_{wi})/(T_{wi}^{O} - T_{C})$$
 (23)

The film cooling data were plotted in figures 8a through 8h as n' vs. φ . The measured values of T_{wj} and T_{wj}^{O} were assumed equal to T_{wi} and T_{wi}^{O} , respectively, in the evaluation of the measured effectiveness, τ' . The straight line in these figures is given by the equation

^{*}For an insulated (adiabatic) surface, $T_{wi}^{o} = T_{aw}$.

 $\eta^* = e^{\pi t/2} \tag{24}$

In the experiment, the slot angle factor, $\cos(0.8\beta)$, was approximately unity for all the condition encountered. In both equation (24) and data, the parameter ϕ was obtained from equation (20) with h_∞^0 evaluated from equation (14) and at z=0, and the terms u_α and f evaluated at z=0 (ref. (8)).

DISCUSSION AND CONCLUSIONS

The one-dimensional heat transfer analysis, used for all the data without film cooling, is expected to be fairly accurate because of the slenderness of the nozzle configuration (see fig. 2a). A comparison between the one-dimensional analysis and an exact solution of a sample temperature field yielded negligible differences in the resulting heat transfer rates. The experimental Nusselt numbers were, therefore, computed by the one-dimensional method. The results showed fair agreement with the turbulent flow correlations as shown in figure 6. The scatter in the data of figure 6 can be attributed mainly to the relatively low wall temperature levels and temperature gradients. The probable error in the measured heat transfer rates (thus, the Nusselt numbers) was estimated to be as low as ±2% in the throat region and as high as ±30% at z=1.25" and z=9.0".

The film-cooling effectiveness as defined by equation (23) is a measure of the decrease in the wall temperature due to film cooling relative to the maximum possible decrease, whereas the original definition (Eq. (18)) has no physical meaning when applied to a nonadiabatic surface. The heat transfer coefficient, how, appearing in the parameter φ of equation (20) was computed from equation (14). The correlation thus obtained (Eq. (24)) is shown in figures 8a through 8h. The scatter in the data is mainly due to the low measured wall temperatures. The ratio of the two small differences that defined the film-cooling effectiveness (Eq. (23)) can be quite inaccurate. Conversely, the relatively large discrepancies between data and equation (24) indicated in figures 8a through 8h resulted in only moderate discrepancies in terms of the wall temperatures. An example of this is shown by comparing the solid curves with the data in figure 9.* The dashed curves in figure 9 will be discussed later.

The effect of film cooling on the nozzle throat temperature is shown in figure 10 along with the predictions of equation (24). The dashed curves in figure 10 are the estimated throat temperatures that would result if the coolant and the main stream were completely mixed at this point. Figures 8 to 10 will be discussed more fully later.

^{*}Only twelve data points appear in figure 9 instead of the designed fifteen because three thermocouples became inoperative during the experiment.

In an attempt to study the phenomenon of film cooling and, perhaps, to improve the correlation, the theoretical flow model of reference (6) was extended to the case of a nonadiabatic, axisymmetric nozzle (fig. 11). The assumptions used in the development of the extension are as follows:

- (1) The coolant does not mix with the main stream.
- (2) Heat conduction through the nozzle wall is one-dimensional radial.
- (3) The local coolant temperature is equal to the local wall temperature.
- (4) The temperature gradient through the coolant film is negligible. (These first four assumptions are the same as those of reference (6).)
- (5) Heat transfer from the main stream is governed by equations (10) and (11) with h_{∞}^{O} computed from equation (14).
- (6) The water temperature is constant at $530^{\circ}R$. (The total rise in the water temperature from inlet to exit due to heat transfer from the nozzle wall was estimated to be less than $10^{\circ}R$ for the worst case.)
 - (7) The coolant temperature at injection slot exit is 530°R.

A heat balance $Q_1 = Q_2 + Q_3$ and $Q_3 = Q_4$ (fig. 11) yielded the following differential equation:

$$\frac{dT_{wi}}{dz} = \frac{2\pi}{(\hat{m} c_p)_c} \left[h_{\infty}^{o} r_i (T_{aw} - T_{wi}) \right]$$

(25)

$$-\frac{T_{Wi}-T_{H}}{(\log(r_{O}/r_{i})/k_{W})+(1/h_{H}r_{O})}$$

in which h_{∞}^{O} , r_{1} , and T_{aw} were all allowed to vary with z. Typical numerical solutions of equation (25) are shown in figure 9 as dashed curves. It is seen from figure 9 that the extension did not offer a better correlation of film-cooling data than equation (24). Thus, it is concluded that the phenomenon of film cooling of a nonadiabatic nozzle is more complex than that described by equation (25).

Although no realistic flow model was developed for the film cooling of a nozzle, the following qualitative observations may be made:

- (1) Figures 8a through 8h indicate that equation (24) generally overestimates the effectiveness for the subsonic flow regime and underestimates it for the sonic and the supersonic flow regimes. Thus, equation (24) would be conservative in estimating the film-cooled nozzle throat temperatures (fig. 10).
- (2) Although figures 8a through 8h showed large discrepancies between the measured and the predicted film-cooling effective-nesses, the difference between the measured and the predicted wall temperatures is less severe.
- (3) The throat temperature (fig. 10) decreases with increasing coolant flow until an optimum value is reached. Further increase in the coolant flow, in some cases, resulted in an increase in the throat temperature. This reversal is believed to be due to the premature mixing of the coolant with the main stream, resulting in a loss of the insulation effect.
- (4) Optimum cooling is achieved when the coolant velocity at the injection slot exit is approximately equal to the main stream velocity at that point. This can be seen from figure 10 and the following table:

${f T_S}$	$\begin{bmatrix} \cdot & \cdot & \circ \\ \dot{m}_{c} / \dot{m}_{g} \end{bmatrix}_{(u_{c} / u_{g})_{z=0}} = 1$
672 ⁰ R	4.5%
852 ^O R	5.6%
1032°R	6.8%
1212 ^O R	8.0%

For lack of a rigorous and exact analysis and a comprehensive experimental investigation, it is felt that, for engineering purposes, equation (24) offers a fair correlation of film-cooling data and may be used in estimating the film-cooled wall temperatures.

SUMMARY

The air-film cooling of a Mach 2.4, nonadiabatic wall, axially symmetric, contoured nozzle was investigated experimentally. The main stream was air at supply conditions of 672°R to 1212°R and 115 psia to 465 psia. The film coolant was air at ambient temperatures and injected through a single annular slot of 10°

discharge angle. The coolant to main stream mass flow ratios were varied up to 20 percent. Steady-state temperature distributions along the inner and the outer walls were measured in both the subsonic and the supersonic flow regimes.

For the supply conditions tested, the main stream flow was fully developed and turbulent. The heat transfer data without film cooling were correlated reasonably well with the equation of Dittus and Boelter for turbulent pipe flow.

The film-cooled nozzle wall temperatures were correlated qualitatively with a modified version of the equation of Hatch and Papell, the modification being a definition of the film-cooling effectiveness for a nonadiabatic surface.

Optimum cooling is achieved when the velocities of the two streams at the injection slot exit are approximately equal.

For engineering purposes, the film-cooled wall temperatures may be estimated by the following procedure (for both adiabatic and nonadiabatic surfaces):

- (1) Calculate, by conventional methods, the wall temperatures in the absence of film cooling.
- (2) For a given coolant flow rate, compute the effectiveness from equation (17) or (24), evaluating all the parameters (except "z") in the term φ at z=0.
- (3) Compute the film-cooled wall temperature from equation (18) or (23).

Steps (2) and (3) are iterated if the film-cooled wall temperature is prescribed and the coolant flow rate is to be determined.

REFERENCES

- (1) Eckert, E. R. G. and Livingood, J. N. B., "Comparison of Effectiveness of Convection-, Transpiration-, and Film-Cooling Methods with Air as Coolant," NACA Rept. 1182, 1954
- (2) Chin, J. H., Skirvin, S. C., et al., "Film Cooling with Multiple Slots and Louvers," ASME JHT 83-3, Aug 1961
- (3) Boden, R. H., "Heat Transfer in Rocket Motors and the Application of Film and Sweat Cooling," ASME Trans. 73-4, May 1951
- (4) Graham, A. R., "An Experimental and Theoretical Investigation of Film Cooling of Rocket Motors," Purdue Univ. Rocket Lab. Rept. F 57-3, Oct 1957
- (5) Carter, H. S., "Water-Film Cooling of an 80° Total-Angle Cone at Mach Number of 2 for Airstream Total Temperatures Up to 3000°R," NASA TN D-2029, Oct 1963
- (6) Hatch, J. E. and Papell, S. S., "Use of a Theoretical Flow Model to Correlate Data for Film Cooling or Heating an Adiabatic Wall by Tangential Injection of Gases of Different Fluid Properties," NASA TN D-130, Nov 1959
- (7) Papell, S. S., "Effect on Gaseous Film Cooling of Coolant Injection Through Angled Slots and Normal Holes," NASA TN D-299, Sep 1960
- (8) Lucas, J. G. and Golladay, R. L., "An Experimental Investigation of Gaseous-Film Cooling of a Rocket Motor,"
 NASA TN D-1988, Oct 1963
- (9) Finch, D. I., "General Principles of Thermoelectric Thermometry," Temperature, Its Measurement and Control in Science and Industry, Vol. 3, Part 2, Reinhold, 1962
- (10) ASME Power Test Codes, Chap 4: "Flow Measurement by Means of Standardized Nozzles and Orifice Plates," 1949
- (11) Hilsenrath, J., Beckett, C. W., Benedict, W. S., et al., "Tables of Thermal Properties of Gases," NBS Circular 564, Nov 1955
- (12) Watson, T. W. and Robinson, H. W., "Thermal Conductivity of a Specimen of Chromium-Copper Alloy," NBS Rept. 7775, Jan 1963

- (13) McAdams, W. H., "Heat Transmission," 3rd Ed., McGraw-Hill, 1954
- (14) Colucci, S. E., "Experimental Determination of Solid Rocket Nozzle Heat Transfer Coefficients," Aerojet-General Tech. Paper 106 SRP, May 1960
- (15) Rohsenow, W. M. and Choi, H., "Heat, Mass, and Momentum Transfer," Prentice-Hall, 1961

FIG. 1. FILM-COOLING APPARATUS SCHEMATIC

FIG. 2a. NOZZLE CONFIGURATION

FIG. 2b. DESIGN FLOW CHARACTERISTICS OF NOZZLE

FIG. 2c. COOLANT INJECTION SLOT

FIG. 3. THERMOCOUPLE LOCATIONS

FIG. 4. THERMOCOUPLE PLUG DESIGN

-

FIG. 5. THERMOCOUPLE READ-OUT SCHEMATIC

FIG. 6. NOZZLE HEAT-TRANSFER CORRELATION

FIG. 7. VELOCITY RATIO FUNCTION

FIG. 8a. NOZZLE FILM-COOLING CORRELATION FOR $T_{\rm s}$ = 672 $^{\rm o}$ R AND $P_{\rm s}$ = 315 psia

FIG. 8a. NOZZLE FILM-COOLING CORRELATION FOR $T_s = 672^{\circ}R$ AND $P_s = 315_{.psia}$

FIG. 8b. NOZZLE FILM-COOLING CORRELATION FOR $T_s=852\,^{\rm O}R$ AND $P_s=315\,{\rm ps} l\alpha$

FIG. 8c. NOZZLE FILM-COOLING CORRELATION FOR $T_s=852\,^{\rm o}R$ AND $P_s=465\,{\rm psi}\sigma$

FIG. 8d. NOZZLE FILM-COOLING CORRELATION

FOR T_s = 1032 o_R AND P_s = 115 psia

140-

FIG. 8d. NOZZLE FILM-COOLING CORRELATION FOR T_s = 1032 or AND P_s = 115 psia

FIG. 8e. NOZZLE FILM-COOLING CORRELATION FOR T $_{\rm s}$ = 1032 $^{\rm o}{\rm R}$ AND P $_{\rm s}$ = 215 psia

FIG. 8f. NOZZLE FILM-COOLING CORRELATION FOR $T_s=1032$ °R AND $P_s=315$ psia

OPEN SYMBOLS:

M₀₀ < 1

HALF-OPEN SYMBOLS: Mo = 1

SOLID SYMBOLS:

M₀₀ >1

FIG. 8g. NOZZLE FILM-COOLING CORRELATION FOR $T_s = 1212$ OR AND $P_s = 115$ psia

FIG. 9. MEASURED AND PREDICTED WALL TEMPERATURES

FIG. 10. FILM-COOLED NOZZLE THROAT TEMPERATURES

FIG. 10. (CONT'D) FILM-COOLED NOZZLE THROAT TEMPERATURES

FIG. 11. EXTENDED FLOW MODEL OF REFERENCE (6)

No. of Copies Chief, Bureau of Naval Weapons Department of the Navy 20360 Washington, D. C. Attn: DLI-3 Attn: R-14 Attn: RRRE-4 2 Attn: RMGA-811 Attn: RMMO-42 Office of Naval Research T-3Washington, D. C. Attn: Head, Structural Mechanics Branch Attn: Head, Fluid Dynamics Branch Director, David Taylor Model Basin Aerodynamics Laboratory Washington, D. C. Attn: Library Commander, U. S. Naval Ordnance Test Station China Lake, (alifornia Attn: Technical Library Attn: Code 406 Director, Naval Research Laboratory Washington, D. C. Attn: Code 2027 Commanding Officer Office of Naval Research Branch Office Box 39, Navy 100 Fleet Post Office New York, New York NASA High Speed Flight Station Box 273 Edwards Air Force Base, California NASA Ames Research Center Moffett Field, California

Attn: Librarian

No. of Copies

Commander, Naval Weapons Laboratory Dahlgren, Virginia Attn: Library

Director, Special Projects Department of the Navy Washington 25, D. (. Attn: SP-2722

Director of Intelligence Headquarters, USAF Washington 25, D. C. Attn: AFOIN-3B

Headquarters - Aero. Systems Division Wright-Patterson Air Force Base Dayton, Ohio Attn: WWAD

Attn: RRLA-Library

2

Commander Air Force Ballistic Systems Division Norton Air Force Base San Bernardino, California Attn: BSRVA

2

Chief, Defense Atomic Support Agency Washington 25, D. C. Attn: Document Library

Headquarters, Arnold Engineering Development Center ARO, Inc.

Arnold Air Force Station, Tennessee

Attn: Technical Library

Attn: AEOR Attn: AEOIM

Commanding Officer, Harry Diamond Laboratories Washington 25, D. C.

Attn: Library, Room 211, Bldg. 92

Commanding General U. S. Army Missile Command Redstone Arsenal, Alabama

Attn: AMSMI-RR (Mr. N. Shapiro)

Attn: AMSMI-RB (Redstone Scientific Information Center)

No. of Copies

2

NASA

George (, Marshall Space Flight Center

Huntsville, Alabama

Attn: Dr. E. Geissler

Attn: Mr. f. Reed

Attn: Mr. H. Paul

Attn: Mr. W. Dahm

Attn: Mr. H. A. Connell

Attn: Mr. J. Kingsbury

Attn: ARDAB=DA

APL/JHU (NOw 7386)

8621 Georgia Avenue

Silver Spring, Maryland

Attn: Technical Reports Group

Attn: Mr. D. Fox

Attn: Dr. F. Hill

Attn: Dr. L. L. Cronvich

Air Force Systems Command

Scientific & Technical Liaison Office

Department of the Navy

Washington, D. C.

Attn: Alonzo P. Mercier

Scientific & Technical Information Facility

P. O. Box 5700

Bethesda, Maryland

Attn: NASA Representative (S-AK/DL)

Commander

Air Force Flight Test Center

Edwards Air Force Base

Muroc, California

Attn: FTOTL

Air Force Office of Scientific Research

Hollomon Air Force Base

Alamogordo, New Mexico

Attn: SRLTL

U. S. Army Engineer Research & Development

Laboratories

Fort Belvoir, Virginia

Attn: STINFO Branch

No. of Copies

University of Minnesota Minneapolis 14, Minnesota

Attn: Dr. E. R. G. Eckert

Attn: Heat Transfer Laboratory

Attn: Technical Library

Rensselaer Polytechnic Institute Troy, New York

Attn: Dept. of Aeronautical Engineering

Dr. James P. Hartnett Department of Mechanical Engineering University of Delaware Newark, Delaware

Princeton University
James Forrestal Research Center
Gas Dynamics Laboratory
Princeton, New Jersey

Attn: Prof. S. Bogdonoff

Attn: Dept. of Aeronautical Engineering Library

Defense Research Laboratory The University of Texas P. O. Box 8029 Austin 12, Texas

Attn: Assistant Director

Ohio State University

Columbus 10, Ohio

Attn: Security Officer

Attn: Aerodynamics Laboratory

Attn: Dr. J. Lee

Attn: Chairman, Dept. of Aero. Engineering

California Institute of Technology Pasadena, California

Attn: Guggenheim Aero. Laboratory,

Aeronautics Library

Attn: Jet Propulsion Laboratory

Attn: Dr. H. Liepmann

Attn: Dr. L. Lees

Attn: Dr. D. Coles

Attn: Dr. A. Roshko

Attn: Dr. J. Laufer

Case Institute of Technology Cleveland 6, Chio

Attn: G. Kuerti

No. of Copies

North American Aviation, Inc. Aerophysics Laboratory Downey, California

Attn: Chief, Aerophysics Laboratory Attn: Missile Division (Library)

Department of Mechanical Engineering Yale University 400 Temple Street New Haven, Connecticut Attn: Dr. P. P. Wegener

MIT Lincoln Laboratory Lexi igton, Massachusetts

RAND (orporation 1700 Main Street Santa Monica, California

Attn: Library, USAF Project RAND Attn: Technical Communications

Mr. J. Lukasiewicz, Chief Gas Dynamics Facility ARO, Incorporated Tullahoma, Tennessee

Massachusetts Institute of Technology Cambridge 39, Massachusetts

Attn: Prof. J. Kaye Attn: Prof. M. Finston Attn: Mr. J. Baron

Attn: Prof. A. H. Shapiro Attn: Naval Supersonic Laboratory Attn: Aero. Engineering Library Attn: Prof. Ronald F. Probstein

Attn: Prof. (, C, Lin

Polytechnic Institute of Brooklyn 527 Atlantic Avenue Freeport, New York

Attn: Dr. M. Bloom Attn: Dr. P. Libby

Attn: Aerodynamics Laboratory

Brown University Division of Engineering Providence, Rhode Island Attn: Librarian

No. of Copies

2

Air Ballistics Laboratory Army Ballistic Missile Agency Huntsville, Alabama

Applied Mechanics Reviews Southwest Research Institute 8500 Culebra Road San Antonio, Texas

BUWEPS Representative Aerojet-General Corporation 6352 N. Irwindale Avenue Azusa, California

The Boeing Company Seattle, Washington

Attn: J. H. Russell, Aero-Space Division

Attn: Research Library

United Aircraft Corporation 400 Main Street East Hartford 8, Connecticut

Attn: Chief Librarian

Attn: Mr. W. Kuhrt, Research Department

Attn: Mr. J. G. Lee

Hughes Aircraft Company
Florence Avenue at Teale Streets
Culver City, California
Attn: Mr. D. J. Johnson

R&D Technical Library

McDonnell Aircraft Corporation P. O. Box 516 St. Louis 3, Missouri

Lockheed Missiles and Space Company P. O. Box 504 Sunnyvale, California

Attn: Dr. L. H. Wilson Attn: Mr. M. Tucker Attn: Dr. R. Smelt

Martin Company Baltimore, Maryland

Attn: Library

Attn: Chief Aerodynamicist

Attn: Dr. W. Morkovin, Aerophysics Division

3

No. of Copies CONVAIR A Division of General Dynamics Corporation Fort Worth, Texas Attn: Library Attn: Theoretical Aerodynamics Group Purdue University School of Aeronautical & Engineering Sciences LaFayette, Indiana Attn: R. L. Taggart, Library University of Maryland College Park, Maryland Attn: Director 2 Attn: Dr. J. Burgers Attn: Librarian, Engr. & Physical Sciences Attn: Librarian, Institute for Fluid Dynamics and Applied Mathematics Attn: Prof. S. I. Pai University of Michigan Ann Arbor, Michigan Attn: Dr. A. Kuethe Attn: Dr. A. Laporte Attn: Department of Aeronautical Engineering Stanford University Palo Alto. California Attn: Applied Mathematics & Statistics Lab. Attn: Prof. D. Bershader, Dept. of Aero. Engr. Cornell University Graduate School of Aeronautical Engineering Ithaca. New York Attn: Prof. W. R. Sears The Johns Hopkins University Charles and 34th Streets Baltimore, Maryland Attn: Dr. F. H. Clauser University of California Berkeley 4, California Attn: G. Maslach

Attn: Dr. S. A. Schaaf

Attn: Institute of Engineering Research

Attn: Dr. Holt

No. of Copies

Cornell Aeronautical Laboratory, Inc. 4455 Genesee Street Buffalo 21, New York

Attn: Librarian

Attn: Dr. Franklin Moore

Attn: Dr. J. G. Hall Attn: Mr. A. Hertzberg

University of Minnesota
Rosemount Research Laboratories
Rosemount, Minnesota
Attn: Technical Library

Director, Air University Library Maxwell Air Force Base, Alabama

Douglas Aircraft Company, Inc. Santa Monica Division 3000 Ocean Park Boulevard Santa Monica, California

Attn: Chief Missiles Engineer Attn: Aerodynamics Section

CONVAIR

A Division of General Dynamics Corporation Daingerfield, Texas

CONVAIR

Scientific Research Laboratory 5001 Kearney Villa Road San Diego, California

Attn: Asst. to the Director of Scientific Research

Attn: Dr. B. M. Leadon

Attn: Library

Republic Aviation Corporation Farmingdale, New York Attn: Technical Library

General Applied Science Laboratories, Inc. Merrick and Stewart Avenues Westbury, L. I., New York

Attn: Mr. Walter Daskin Attn: Mr. R. W. Byrne

	No. of Copies
Arnold Research Organization, Inc.	
Tullahoma, Tennessee	
Attn: Technical Library	
Attn: Chief, Propulsion Wind Tunnel	
Attn: Dr. J. L. Potter	
General Electric Company	
Missile Space Division	
3198 Chestnut Street	
Philadelphia, Pennsylvania	
Attn: Larry Chasen, Mgr. Library	2
Attn: Mr. R. Kirby	
Attn: Dr. J. Farber	
Attn: Dr. G. Sutton	
Attn: Dr. J. D. Stewart	
Attn: Dr. S. M. Scala	
Attn: Dr. H. Lew	
Attn: Mr. J. Persh	
Eastman Kodak Company	
Navy Ordnance Division	
50 West Main Street	
Rochester 14, New York	
Attn: W. B. Forman	2
Library	3
AVCO-Everett Research Laboratory	
2385 Revere Beach Parkway	
Everett 49, Massachusetts	
Chance-Vought Corp.	
Post Office Box 5907	
Dallas, Texas	
Library 1-6310/3L-2884	
National Science Foundation	
1951 Constitution Avenue, N. W.	
Washington 25, D. C.	
Attn: Engineering Sciences Division	
New York University	
University Heights	
New York 53, New York	
Attn: Department of Aeronautical Engineering	

AERODYNAMICS LABORATORY EXTERNAL DISTRIBUTION LIST (A2)

No. of Copies

New York University
25 Waverly Place
New York, New York
Attn: Library, Institute of Math. Sciences

NORAIR
A Division of Northrop Corporation
Hawthorne, California
Attn: Library

Northrop Aircraft, Inc. Hawthorne, California Attn: Library

Gas Dynamics Laboratory Technological Institute Northwestern University Evanston, Illinois Attn: Library

Pennsylvania State University
University Park, Pennsylvania
Attn: Library, Dept. of Aero, Engineering

The Ramo-Wooldridge Corporation 8820 Bellanca Avenue Los Angeles 45, California

Gifts and Exchanges Fondren Library Rice Institute P. O. Box 1892 Houston, Texas

University of Southern California Engineering Center Los Angeles 7, California Attn: Librarian

The Editor
Battelle Technical Review
Battelle Memorial Institute
505 King Avenue
Columbus, Ohio

Douglas Aircraft Company, Inc. Long Beach, California Attn: Library

No. of Copies

FluiDyne Engineering Corporation 5740 Wayzata Boulevard Golden Valley Minneapolis, Minnesota

Grumman Aircraft Engineering Corporation Bethpage, Long Island, New York

Lockheed Missiles and Space Company P. O. Box 551 Burbank, California Attn: Library

Marquardt Aircraft Corporation 7801 Havenhurst Van Nuys, California

Martin Company Denver, Colorado

Martin Company Orlando, Florida Attn: J. Mayer

Mississippi State College Engineering and Industrial Research Station Aerophysics Department P. O. Box 248 State College, Mississippi

Lockheed Missiles and Space Company 3251 Hanover Street Palo Alto, California Attn: Library

General Electric Company Research Laboratory Schenectady, New York

Attn: Dr. H. T. Nagamatsu

Attn: Library

Fluid Dynamics Laboratory Mechanical Engineering Department Stevens Institute of Technology Hoboken, New Jersey

Attn: Dr. R. H. Page, Director

No. of Copies

Department of Mechanical Engineering University of Arizona Tucson, Arizona Attn: Dr. E. K. Parks

Vitro Laboratories 200 Pleasant Valley Way West Orange, New Jersey

Department of Aeronautical Engineering University of Washington Seattle, Washington Attn: Prof. R. E. Street Attn: Library

American Institute of Aeronautics & Astronautics 1290 Avenue of the Americas New York, New York

Attn: Managing Editor Attn: Library

Department of Aeronautics United States Air Force Academy Colorado

MHD Research, Inc. Newport Beach, California Attn: Technical Director

University of Alabama
College of Engineering
University, Alabama
Attn: Head, Dept. of Aeronautical
Engineering

ARDE Associates 100 W. (entury Road Paramus, New Jersey Attn: Mr. Edward Cooperman

Aeronautical Research Associates of Princeton 50 Washington Road Princeton, New Jersey Attn: Dr. C. duP. Donaldson, President

No. of Copies

Daniel Guggenheim School of Aeronautics Georgia Institute of Technology Atlanta, Georgia

Attn: Prof. A. L. Ducoffe

University of Cincinnati Cincinnati, Ohio

Attn: Prof. R. P. Harrington, Head

Dept. of Aeronautical Engineering

Prof. Ting Yi Li, Aerospace Engineering Dept.

Virginia Polytechnic Institute Dept. of Aerospace Engineering Blacksburg, Virginia Attn: Dr. R. T. Keefe

Attn: Dr. J. B. Eades. Jr.

Attn: Library

IBM Federal System Division 7220 Wisconsin Avenue Bethesda, Maryland Attn: Dr. I. Korobkin

Superintendent U. S. Naval Postgraduate School Monterey, California

Technical Reports Section Library Attn:

National Bureau of Standards Washington 25, D. C. Attn: Chief, Fluid Mechanics Section

North Carolina State College Raleigh, North Carolina

Attn: Division of Engineering Research

Technical Library

Defense Research Corporation P. O. Box No. 3587 Santa Barbara, California Attn: Dr. J. A. Laurmann

Aerojet-General Corporation 6352 North Irwindale Avenue Box 296 Azusa, California

No. of Copies

Apollo - DDCS General Electric Company A&E Building, Room 204 Daytona Beach, Florida Attn: Dave Hovis

University of Minnesota Institute of Technology Minneapolis, Minnesota Attn: Prof. J. D. Akerman

Engineering

Guggenheim Laboratory
Stanford University
Stanford, California
Attn: Prof. D. Bershader, Department of Aero.

Space Technology Laboratory, Inc. 1 Space Park Redondo Beach, California 90200 Attn: STL Tech. Lib. Doc. Acquisitions

University of Illinois
Department of Aeronautical and Astronautical Engineering
Urbana, Illinois
Attn: Prof. H. S. Stilwell

Armour Research Foundation
Illinois Institute of Technology
10 West 35th Street
Chicago, Illinois
Attn: Dr. L. N. Wilson

Institute of the Aeronautical Sciences Pacific Aeronautical Library 7600 Beverly Boulevard Los Angeles, California

University of California Department of Mathematics Los Angeles, California Attn: Prof. A. Robinson

Louisiana State University Department of Aeronautical Engineering College of Engineering Baton Rouge, Louisiana

No. of Copies

Mathematical Reviews
American Mathematical Society
80 Waterman Street
Providence, Rhode Island

Stanford University
Department of Aeronautical Engineering
Stanford, California
Attn: Library

University of California Aeronautical Sciences Laboratory Richmond Field Station 1301 South 46th Street Richmond, California

University of Denver Department of Aeronautical Engineering Denver 10, Colorado

University of (hicago Laboratories for Applied Sciences Museum of Science and Industry (hicago, Illinois Attn: Librarian

University of Colorado Department of Aeronautical Engineering Boulder, Colorado

University of Illinois Aeronautical Department Champaign, Illinois

University of Kentucky
Department of Aeronautical Engineering
College of Engineering
Lexington, Kentucky

University of Toledo Department of Aeronautical Engineering Research Foundation Toledo, Ohio

No. of Copies

Aerospace Corporation P. O. Box 95085 Los Angeles, California

Attn: Advanced Propulsion & Fluid Mechanics Department

Attn: Gas Dynamics Department

Boeing Scientific Research Laboratory P. O. Box 3981 Seattle, Washington

Attn: Dr. A. K. Sreekanth Attn: G. J. Appenheimer

Vidya, Inc. 2626 Hanover Palo Alto, California Attn: Mr. J. R. Stalder Attn: Library

General Electric Company FPD Technical Information Center F-22 Cincinnati, Ohio

Northwestern University Technological Institute Evanston, Illinois Attn: Department of Mechanical Engineering

Harvard University Cambridge, Massachusetts

Attn: Prof. of Engineering Sciences & Applied Physics

Attn: Library

University of Wisconsin P. O. Box 2127 Madison, Wisconsin Attn: Prof. J. O. Hirschfelder

Dr. Antonio Ferri, Director Guggenheim Aerospace Laboratories New York University 181st St. and University Ave. Bronx, New York

Cornell University Graduate School of Aeronautical Engineering Ithaca, New York Attn: Dr. Shan-Fu Shen

نقا
ŝ
=
>-
œ
IBRA
笠
쁘
_
œ
5
u.
z
Õ
Ξ
•
\$
œ
쥰
"
=
G
₹
3
ŏ
ã
⋖
S
-

			916	BLIOGRAPHIC	BIBLIOGRAPHIC INFORMATION			
	DESCRIPTORS	PTORS		CODES			DESCRIPTORS	CODES
SOURCE	NOL technical rep	report		NOL TR	SECURITY CLASSIFICATION AND CODE COUNT		Unclassified - 36	U\$/36
REPORT NUMBER	eμ -6 5		9	64øø65	CIRCULATION LIMITATION	NO!		
REPORT DATE	18 August 1964			17986	CIRCULATION LIMITATION OR BIBLIOGRAPHIC	NOIL		
					BIBLIOGRAPHIC (SUPPL., VOL., ETC.)			
			ns	JBJECT ANALY	SUBJECT ANALYSIS OF REPORT			
_	DESCRIPTORS	CODES	C	DESCRIPTORS		CODES	DESCRIPTORS	CODES
Air		AIRE	High tem	temperature		HTEM	Subsonic	SUBS
Film		COAT	Temperature	ain.		TEMP	Turbulent	TUBU
Cooling		1000	Supply			SUPP	Phpe	PI PE
Nozzle		ZZON	Pressures	స		PRES	Equation	EQUA
Supersonic	ic	SUPR	Slot			SLOT	Prediction	PRED
Internal		INTO	Injection	ជ		INJC	Heat transfer	HEAF
Mach		MACH	Coolant			COOA	Rates	RATE
2.4		2X25	Mass			MASZ	Estimation	ESTM
Non-adiabatic	batic	ADIAX	Flow			FLOW	Comparison	CMRI
Wall		WALL	Ratio			PATI	Experiment	EXPE
Axial		AXIA	Variation	£	3	VART	Theory	THEY
Symmetry		SYMM	Steady-state	tate		STBI	Instrumentation	INSM
PRMC-NOL-5070/28 (5-62)	63							

1. Wind funnels Nezzles Coeling 3. Film coeling I. Title II. Lieu, Bing H. III. Series IV. Preject unelassified.	1. Wind tunnels Nozzles Cooling Film Cooling I. Title II. Liteu, His Bing H. III. Series IV. Preject undlassified.
Naval Ordnance Laberatory, White Oak, Mi. (NOL technical report 64-65) AIR-TILM GOOLING OF A SUPERSONIC NOZZLE (U), by Bing H. Lieu. 18 Aug. 1964. 13p. 41agrs., charts. (Aerodynanics research report 224) Buweps task PR-10. This report presents a comparison between experimental data and theoretical calculation of air-film cooling of an axisymmetric, Mach 2.4 nezzle. The turbulout pipe flow equation of Dittus and Boelter was found to be appli- cable in predicting the heat transfer rates in the absence of film cooling. A meditied version of the semi-empirical equation of Hatch and Papell was found applicable in esti- mating the film-cooled nezzle wall temper- atures.	Navel Ordnance Laberatory, White Oak, Md. (NOL technical report 64.65) AIR-FILM COOLING OF A SUPERSONIC NOZZLE (U), by Bing H. Lieu. 18 Aug. 1964. 13p. diagrs., charts. (Aeredynanics renearch report 224) BUWeps task FR-10. This report presents a comparison between experimental data and theoretical calculations of air-film cooling of an axisymmetric, Mack of air-film cooling of an axisymmetric, Mack of Dittus and Beelter was found to be appli- fin the absence of film cooling. A medified vorsion of the seni-empirical equation of Hatch and Papell was found applicable in esti- mating the film-cooled nezzle wall temper-
1. Wind tunnels Nozzles 2. Nozzles 3. Nozzles 3. Film I. Title II. Lieu, Eliag H. III. Series IV. Preject unclassified.	1. Wind tunnels 2. Nozzles 3. Cooling 3. Film cooling I. Title II. Lieu, Bing H. III. Series IV. Preject undlassified.
Navel Ordnance Laberatery, White Oak, Nd. (NOL technical report 54-65) AIR-FILM COOLING OF A SUPERSONIC NOZZLE (U), by Bing H. Lidu. 18 Aug. 1964. 13p. diagrs. charts. (Aeretynanics research report 224) Buweps task PR-10. This report presents a compa ison between experimental data and theoretical calculations of air-film cocling of an axisymetric, Nach 2.4 nezzle. The turbulent pipe flow equation of Dittus and Boelter was found to be applicable in predicting the heat transfer rates in the absence of film cocling. A medified version of the send empirical equation of Hatch and Papell was found applicable in estimating the film-coeled nezzle wall temper—	Navel Ordnance Laberatory, White Dak, MG. (NOL technical report 64-65) AIR-FILM COOLING OF A SUPERSONIC NOZZLE (U), 2 by Bing H. Lieu. 18 Aug. 1964. 13p. 1dagrs., charts. (Aeretynamics research report 224) Buweps task PR-10. This report presents a comparison between experimental data and theoretical calculations of air-film coelling of an axisymmetric, Nach ef air-film coelling of an axisymmetric, Nach of air-film coelling of an axisymmetric, Nach ef Dittus and Beciter was found to be appli- cable in predicting the Nest transfer rates in the absence of film coelling. A medified wersion of the soni-capinical equation of Hatch and Papell was found applicable in esti- mating the film-coeled nezzle wall temper-

-